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ABSTRACT

We present a general framework for capturing long-range interactions between
an input and structured contextual information (e.g. a pixel surrounded by other
pixels). Our method, called the lambda layer, captures such interactions by trans-
forming available contexts into linear functions, termed lambdas, and applying
these linear functions to each input separately. Lambda layers are versatile and
may be implemented to model content and position-based interactions in global,
local or masked contexts. As they bypass the need for expensive attention maps,
lambda layers can routinely be applied to inputs of length in the thousands, en-
abling their applications to long sequences or high-resolution images. The result-
ing neural network architectures, LambdaNetworks, are computationally efficient
and simple to implement using direct calls to operations available in modern neu-
ral network libraries. Experiments on ImageNet classification and COCO object
detection and instance segmentation demonstrate that LambdaNetworks signif-
icantly outperform their convolutional and attentional counterparts while being
more computationally efficient. Finally, we introduce LambdaResNets, a family
of architectures that considerably improve the speed-accuracy tradeoff of image
classification models. LambdaResNets reach state-of-the-art accuracies on Ima-
geNet while being ⇠4.5x faster than the popular EfficientNets on modern machine
learning accelerators.

1 INTRODUCTION

Modeling long-range interactions is of central importance in machine learning. Attention (Bahdanau
et al., 2015; Vaswani et al., 2017) has emerged as the paradigm of choice for capturing long-range
interactions. However, the quadratic memory footprint of self-attention has hindered its applica-
bility to long sequences or multidimensional inputs such as images which typically contain tens of
thousands of pixels. For example, applying a single multi-head attention layer to a batch of 256 of
64x64 input images with 8 heads requires 32GB of memory, which is prohibitive in practice.

This work presents a class of layers, termed lambda layers, which provide a general framework
for capturing long-range interactions between an input and a structured set of context elements.
Lambda layers transform available contexts into individual linear functions, termed lambdas, that
are directly applied to each input separately. We motivate lambda layers as a natural alternative to
attention mechanisms. Whereas attention defines a similarity kernel between the input and context
elements, lambda layers summarize contextual information into a fixed-size linear function, thus
bypassing the need for memory-expensive attention maps. This contrast is illustrated in Figure 1.

We demonstrate the versatility of lambda layers and show that they may be implemented to capture
content-based and position-based interactions in global, local or masked contexts. The resulting
neural networks, LambdaNetworks, are computationally efficient, model long-range dependencies
at a small memory cost and can therefore be routinely applied to large structured inputs such as high
resolution images. We evaluate LambdaNetworks on computer vision tasks where self-attention has
shown promise (Bello et al., 2019; Ramachandran et al., 2019) but has suffered from large mem-
ory costs and impractical implementations. Controlled experiments on ImageNet classification and
COCO object detection and instance segmentation indicate that LambdaNetworks signifcantly out-
perform their convolutional and attentional counterparts while being more computationally efficient
and much faster than the latter. Finally, we introduce LambdaResNets, a family of hybrid Lamb-
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Figure 1: Comparison between attention and lambda layers. (Left) An example of 3 queries and
their local contexts within a global context. (Middle) The attention operation associates each query
with an attention distribution over its context. (Right) The lambda layer transforms each context
into a linear function lambda that is applied to the corresponding query.

daNetworks across different scales, which significantly improve the speed-accuracy tradeoff of im-
age classification models. In particular, LambdaResNets reach state-of-the-art ImageNet accuracies
while being 4.5x faster than EfficientNets.

2 MODELING LONG-RANGE INTERACTIONS

In this section, we formally define the notions queries, contexts and interactions. We motivate keys
as a requirement for capturing interactions between queries and their contexts and show that lambda
layers arise as an alternative to attention mechanisms for capturing long-range interactions.

Notation. We denote scalars, vectors and tensors using lower-case, bold lower-case and bold
upper-case letters, e.g., n, x and X . We denote as |n| the cardinality of a set whose elements
are indexed by n. We denote xn the n-th row of X and {xn} the collection of its |n| rows. We
denote xij the |ij| elements of X . When possible, we adopt the terminology of self-attention to
ease readability and highlight differences.

Defining queries, contexts and interactions. Let Q = {(qn, n)} and C = {(cm,m)} denote
structured collections of vectors, respectively referred to as the the queries and the context. Each
query (qn, n) is characterized by its content qn 2 R|k| and position n. Similarly, each context
element (cm,m) is characterized by its content cm and its position m in the context. The (n,m) pair
may refer to any type of pairwise relation between structured elements. For example, it could refer
to the 2D relative distance between pixels arranged in a two-dimensional grid or to edge relations
between nodes in a graph.

We consider the general problem of mapping a query (qn, n) to an output vector yn 2 R|v| given
the context C with a function F : ((qn, n), C) 7! yn. Such a function may act as a layer in a neural
network when processing structured inputs. We refer to (qn, cm) interactions as content-based and
(qn, (n,m)) interactions as position-based. Additionally, we say that F captures global interactions
when the output yn depends on all (qn, cm) (or (qn, (n,m))) interactions and local when only a
restricted smaller context around n is considered. Finally, these interactions are defined as dense if
they include all |m| elements in the context and sparse otherwise.

Introducing keys to capture long-range interactions. In the context of deep learning, we prior-
itize fast batched linear operations and choose our interactions to be captured by dot-product opera-
tions. This motivates introducing vectors that can interact with the queries via a dot-product opera-
tion and therefore have the same dimension as the queries. In particular, content-based interactions
(qn, cm) require a |k|-dimensional vector that depends on cm, commonly referred to as the key km.
Conversely, position-based interactions (qn, (n,m)) require a positional embedding enm 2 R|k|,
sometimes called a relative key (Shaw et al., 2018). As the query/key depth |k| and context spatial
dimension |m| are not in the output yn 2 R|v|, these dimensions need to be contracted as part of the
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Table 1: Hyperparameter, parameters and quantities of interest describing our lambda layer.

Name Type Description

|k|, |v|, |u| hyperparameter key/query depth, value depth, intra-depth

WQ 2 Rd⇥|k| parameter a tensor that linearly projects the inputs
WK 2 Rd⇥|k|⇥|u| a tensor that linearly projects the context
WV 2 Rd⇥|v|⇥|u| a tensor that linearly projects the context
Enm 2 R|k|⇥|u| a positional embedding for the relation (n,m).

X 2 R|n|⇥d input the inputs
C 2 R|m|⇥d the context

Q = XWQ 2 R|m|⇥|k|⇥|u| activation the queries
K = CWK 2 R|m|⇥|k|⇥|u| the keys
V = CWV 2 R|m|⇥|v|⇥|u| the values
K̄ = softmaxm(K) the normalized keys

µc
m = KmV T

m 2 R|k|⇥|v|
content contribution from context element m

µp
nm = EnmV T

m 2 R|k|⇥|v|
position contribution from context element m

Y 2 R|n|⇥d outputs the outputs

layer computations. Every layer capturing long-range interactions can therefore be characterized

based on whether it contracts the query depth or the context positions first.

Attentional interactions. Contracting the query depth first creates a similarity kernel (the atten-
tion map) between the query and context elements and is known as the attention operation. This
mechanism can be viewed as addressing a differentiable memory which motivates the query, key,
value terminology. As the number of context positions |m| grows larger and the input and output
dimensions |k| and |v| remain fixed, one may hypothesize that computing attention maps become
wasteful, given that the layer output is a vector of comparatively small dimension |v| ⌧ |m|.

Lambda interactions. Instead, it may be more efficient to simply map each query to its output via
a linear function as yn = F ((qn, n), C) = �(C, n)(qn) for some linear function �(C, n). In this
scenario, the context is aggregated into a fixed-size linear function �n = �(C, n). Each �n acts as a
small linear function that exist independently of the context (once computed) and is discarded after
being applied to its associated query qn. This mechanism is reminiscent of functional programming
and �-calculus which motivates the lambda terminology.

3 LAMBDA LAYERS

A lambda layer takes the inputs X 2 R|n|⇥din and the context C 2 R|m|⇥dc as input and generates
linear function lambdas that are then applied to the queries, yielding outputs Y 2 R|n|⇥dout . Note
that we may have C = X , as is the case for self-attention. Without loss of generality, we assume
din = dc = dout = d. In the rest of this paper, we focus on a specific instance of a lambda layer and
show that it enables dense long-range content and position-based interactions without materializing
attention maps.

3.1 THE LAMBDA LAYER: TRANSFORMING CONTEXTS INTO LINEAR FUNCTIONS

We first describe our lambda layer in the context of a single query (qn, n). As we wish to generate
a linear function lambda R|k| ! R|v|, we interchangeably refer to R|k|⇥|v| matrices as functions.
Hyperparameters, parameters and other quantities of interest of our lambda layer are presented in
Table 1.

Generating the contextual lambda function. Our lambda layer first computes keys and values

by linearly projecting the context, and keys are normalized across context positions via a softmax
operation yielding normalized keys K̄. Its implementation can be viewed as a form of functional
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message passing, with each context element contributing a content function µc
m = K̄mV T

m and a
position function µp

nm = EnmV T
m. The �n function is obtained by summing the contributions from

the context as

�c =
X

m

µc
m =

X

m

K̄mV T
m

�p
n =

X

m

µp
nm =

X

m

EnmV T
m

�n = �c + �p
n 2 R|k|⇥|v|

(1)

where we also define the content lambda �c and position lambda �p
n. The content lambda �c is

invariant to permutation of the context elements, shared across all query positions n and encodes
how to transform the qn solely based on the context content. In contrast, the position lambda �p

n
encodes how to transform the query content qn based on the content cm and positions (n,m),
enabling modeling structured inputs such images.

Applying lambda to its query. The input xn is then transformed into a query qn = WQxn and
the output of the lambda layer is obtained as

yn = �nqn = (�c + �p
n)qn 2 R|v|. (2)

Lambda interpretation. The columns of the �n 2 R|k|⇥|v| matrix can be viewed as a fixed-size
set of |k| |v|-dimensional contextual features. These contextual features are aggregated from the
context’s content and structure. Applying the lambda linear function dynamically distributes these
contextual features to produce the output as yn =

P
k qnk�nk. This process captures dense content

and position-based long-range interactions without producing attention maps.

Normalization. One may modify Equations 1 and 2 to include non-linearities or normalization
operations. Our experiments indicate that applying batch normalization (Ioffe & Szegedy, 2015)
after computing the queries and the values is helpful.

3.2 LAMBDA LAYERS WITH STRUCTURED CONTEXTS

=This section presents how to adapt our lambda layer to structured contexts, such as relative and
local contexts. We discuss masked contexts and their applications in the Appendix B.

Translation equivariance Translation equivariance is a strong inductive bias in many learning
scenarios. The content-based interactions are permutation equivariant and hence already translation
equivariant. We obtain translation-equivariance in position interactions by ensuring that the position
embeddings satisfy Enm = Et(n)t(m) for any translation t. In practice, we define a tensor of relative

position embeddings R 2 R|k|⇥|r|⇥|u|, where r indexes the possible relative positions for all (n,m)
pairs, and reindex it into E 2 R|k|⇥|n|⇥|m|⇥|u| such that Enm = Rr(n,m).

Lambda convolution Despite the benefits of long-range interactions, locality remains a strong
inductive bias in many tasks. Using global contexts may prove noisy or excessive from a computa-
tional standpoint. It may therefore be useful to restrict the scope of position interactions to a local

neighborhood around the query position n as is the case for local self-attention and convolutions.
This can be done by zeroing out the position embeddings for context positions m outside of the
desired scope. However, this strategy remains costly for large values of |m| since the computations
still occur (they are only being zeroed out).

In the case where the context is arranged on a multidimensional grid, we can generate positional

lambdas from local contexts by using a regular convolution that treats the v dimension in V as an
extra spatial dimension. For example, let’s assume we want to generate positional lambdas with
local scope size |r| on 1d sequences. The relative position embedding tensor R 2 R|r|⇥|u|⇥|k| can
be reshaped to R̄ 2 R|r|⇥1⇥|u|⇥|k| and used as the kernel of a 2d convolution to compute the desired
position lambda as

�bnvk = conv2d(Vbnvu, R̄r1uk). (3)
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Table 2: The lambda layer captures content and position-based interactions between queries
and contexts without materializing per-example attention maps. b: batch size, h: number of
heads/queries, n: input length, m: context length, k: query/key depth, d: dimension output.

Content interactions Position interactions
Time Space Time Space

Attention layer ⇥(bnm(hk + d)) ⇥(bhnm) ⇥(bnm(hk + d)) ⇥(bhnm)
Lambda layer ⇥(bmkd/h) - ⇥(bnmkd/h) ⇥(knm+ bnkd/h)

We term this operation the lambda convolution. As the computations are now restricted to a lo-
cal scope, the lambda convolution obtains linear time and memory complexities with respect to

the input length. The lambda convolution is readily usable with additional functionalities such as
dilation and striding and enjoys highly optimized implementations on specialized hardware accel-
erators (Nickolls & Dally, 2010; Jouppi et al., 2017). This is in stark contrast to implementations
of local self-attention (Parmar et al., 2018; Ramachandran et al., 2019) which require materializ-
ing feature patches of overlapping query and memory blocks, increasing memory consumption and
latency (see Table 4).

3.3 REDUCING COMPLEXITY WITH MULTIQUERY LAMBDAS.

Complexity analysis. For a batch of |b| elements, each containing |n| inputs, the number of
arithmetic operations and memory footprint required to apply our lambda layer are respectively
⇥(bnmkv) and ⇥(bnkv + knm). We still have a quadratic memory footprint with respect to the
input length due to the Enm parameters that capture position-based interactions. However this
quadratic term does not scale with the batch size as is the case with the attention operation which
produces per-example attention maps. In practice, the hyperparameter |k| is set to a small value
(such as |k|=16) and we can process large batches of large inputs in cases where attention cannot.

Multiquery lambdas reduce complexity. Recall that the lambdas map queries qn 2 Rk to out-
puts yn 2 Rd. As presented in Eqn 2, this implies that |v|=d. Small values of |v| may therefore act
as a bottleneck on the feature vector yn but larger output dimensions |v| can incur an excessively
large computational cost given our ⇥(bnmkv) and ⇥(bnkv + knm) time and space complexities.

We propose to decouple the time and space complexities of our lambda layer from the output dimen-
sion d. Rather than imposing |v|=d, we create |h| queries {qh

n}, apply the same lambda function �n

to each query qh
n, and concatenate the outputs as yn = concat(�nq1

n, · · · ,�nq
|h|
n ).

We refer to this operation as a multiquery lambda layer as each lambda is applied to |h| queries.
This can also be interpreted as constraining the lambda to a smaller block matrix with |h| equal
repeated blocks. We now have d=|hv| and our time and space complexities become ⇥(bnmkd/h)
and ⇥(bnkd/h + knm). We note that while this resembles the multihead or multiquery (Shazeer,
2019) attention formulation, the motivation is different. Using multiple queries in the attention
operation increases representational power and complexity. In our case, using multiquery lambdas
reduces complexity and representational power. Table 2 compares time and space complexities of
the multiquery lambda layer and the multihead attention operation.

The batched multiquery lambda layer is efficiently implemented with einsum1 as:

�c
bkv = einsum(K̄bmku,Vbmvu)

�p
bnkv = einsum(Eknmu,Vbmvu)

Y c
bnhv = einsum(Qbnhk,�

c
bkv)

Y p
bnhv = einsum(Qbnhk,�

p
bnkv)

Ybnhv = Y c
bnhv + Y p

bnhv

(4)

1The einsum operation denotes general contractions between tensors of arbitrary dimensions. It is numer-
ically equivalent to broadcasting its inputs to share the union of their dimensions, multiplying element-wise
and summing across all dimensions not specified in the output. We describe the shape of a tensor by simply
concatenating its dimensions. For example, a batch of b sequences of n d-dimensional vectors has shape bnd.
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Table 3: Comparison of the lambda layer and attention mechanisms on ImageNet classifica-
tion with a ResNet50 architecture. The lambda layer strongly outperforms alternatives at a fraction
of the parameter cost. We include the reported improvements compared to the ResNet50 baseline in
subscript to account for training setups that are not directly comparable. †: Our implementation.

Layer Params (M) top-1

Conv (He et al., 2016)† 25.6 76.9+0.0

Conv + channel attention (Hu et al., 2018b)† 28.1 77.6+0.7

Conv + double attention (Chen et al., 2018) 33.0 77.0
Conv + efficient attention (Shen et al., 2018) - 77.3+1.2

Conv + relative self-attention (Bello et al., 2019) 25.8 77.7+1.3

Local relative self-attention (Ramachandran et al., 2019) 18.0 77.4+0.5

Local relative self-attention (Hu et al., 2019) 23.3 77.3+1.0

Local relative self-attention (Zhao et al., 2020) 20.5 78.2+1.3

Lambda layer 15.0 78.4+1.5

Lambda layer (|u|=4) 16.0 78.9+2.0

Table 4: The lambda layer reaches higher accuracies while being faster and more memory-
efficient than self-attention alternatives. Inference throughput is measured on 8 TPUv3 cores for
a ResNet50 architecture with input resolution 224x224.

Layer Complexity Memory (GB) Throughput top-1

Global self-attention ⇥(blhn2) 120 OOM OOM
Axial self-attention ⇥(blhn

p
n) 4.8 960ex/s 77.5

Local self-attention (7x7) ⇥(blhnm) - 440ex/s 77.4

Lambda layer ⇥(lkn2) 0.96 1160ex/s 78.4
Lambda layer (shared embeddings) ⇥(kn2) 0.31 1210ex/s 78.0
Lambda layer (|k|=8) ⇥(lkn2) 0.48 1640ex/s 77.9
Lambda convolution (7x7) ⇥(lknm) - 1100ex/s 78.1

and a reshaping operation Ybnhv ! Ybnd. In the special case |u| = 1, we work with the squeezed
tensors and the indice u can be removed from the einsum equations. Local positional lambdas may
instead be obtained via the lambda convolution as in Eq 3.

4 RELATED WORK

While it has not been explicitly stated, the abstraction of transforming available contexts into lin-
ear functions that are applied to queries is quite general and therefore encompasses many previous
works. Closest to our work are channel, spatial and linear attention mechanisms which can be
cast as less flexible instances of content-only lambda interactions. Lambda layers formalize and ex-
tend such approaches to consider both content-based and position-based interactions, which enables
their use as a stand-alone layer on highly structured inputs such as images. Rather than attempting
to closely approximate attention maps as is the case in linear attention formluations, the lambda
abstraction shifts the focus to the design of efficient contextual lambda functions. This leads to mul-
tiquery lambdas as a means to reduce complexity, the intra-depth |u| and more flexible normalization
schemes. Controlled experiments demonstrate that lambda layers significantly outperform attention
alternatives while being more computationally efficient. We discuss related work in details in the
Appendix C.

5 EXPERIMENTS

In subsequent experiments, we test LambdaNetworks on standard large-scale high resolution com-
puter vision benchmarks: ImageNet image classification task (Deng et al., 2009), COCO object de-
tection and instance segmentation (Lin et al., 2014). The visual domain is well-suited to showcase
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Table 5: LambdaResNets improve upon the
parameter-efficiency of large EfficientNets.

Architecture Params (M) top-1

EfficientNet-B6 43 84.0
LambdaResNet152 35 84.0
LambdaResNet200 42 84.3

Table 6: LambdaResNets improve upon the
flops-efficiency of large EfficientNets.

Architecture Flops (G) top-1

EfficientNet-B6 38 84.0
LambdaResNet-270 34 84.0
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Figure 2: LambdaResNets are ⇠4.5x faster than EfficientNets and substantially improve the speed-
accuracy tradeoff of image classification models3across different (depth, image size) scales.

the flexibility of lambda layers since i) the memory footprint of self-attention becomes problematic
for high-resolution imagery and ii) images are highly structured, making position-based interactions
crucial. We construct LambdaResNets by replacing the 3x3 convolutions in the ResNet architec-
ture (He et al., 2016). Unless specified otherwise, all lambda layers use |k|=16, |h|=4 and |u|=1
with a scope size of |m|=23x23. All experiments are implemented with Tensorflow and code will
be open-sourced upon publication. Experimental details can be found in the Appendix D.

LambdaNetworks outperform convolutions and attentional counterparts. In Table 3, we per-
form controlled experiments to compare LambdaNetworks against a) the baseline ResNet50, b)
channel attention and c) prior works that use self-attention to complement or replace the 3x3 con-
volutions in the ResNet50. The lambda layer strongly outperforms these approaches at a fraction of
the parameter cost and notably obtains a +0.8% improvement over Squeeze-and-Excitation (channel
attention).

In Table 4, we compare lambda layers against self-attention and present their throughputs, mem-
ory complexities (specifically the nm term) and ImageNet accuracies. Our results highlight the
weaknesses of self-attention: self-attention cannot model global interactions due to large memory
costs, axial self-attention is still memory expensive and local self-attention is prohibitively slow.
In contrast, the lambda layer can capture global interactions on high-resolution images and obtains
a +1.0% improvement over local self-attention while being almost 3x faster. Additionally, posi-
tional embeddings can be shared across lambda layers to further reduce memory requirements, at
a minimal degradation cost. Finally, the lambda convolution has linear memory complexity, which
becomes practical for very large images as seen in detection or segmentation.

3 Ridnik et al. (2020) and Zhang et al. (2020) report high ImageNet accuracies while being up to 2x faster
than EfficientNets on GPUs. We will add GPU latencies in a future draft to rigorously compare against these
works. Since LambdaResNets are ⇠4.5x faster than EfficientNets, we expect LambdaResNets to be much
faster than these architectures as well.
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Table 7: COCO object detection and instance segmentation with Mask-RCNN architecture on
1024x1024 inputs. Mean Average Precision (AP) is reported at three IoU thresholds and for small,
medium, large objects (s/m/l).

Backbone APbb
coco APbb

s/m/l APmask
coco APmask

s/m/l

ResNet-101 48.2 29.9 / 50.9 / 64.9 42.6 24.2 / 45.6 / 60.0
ResNet-101 + SE 48.5 29.9 / 51.5 / 65.3 42.8 24.0 / 46.0 / 60.2
LambdaResNet-101 49.4 31.7 / 52.2 / 65.6 43.5 25.9 / 46.5 / 60.8
ResNet-152 48.9 29.9 / 51.8 / 66.0 43.2 24.2 / 46.1 / 61.2
ResNet-152 + SE 49.4 30.0 / 52.3 / 66.7 43.5 24.6 / 46.8 / 61.8
LambdaResNet-152 50.0 31.8 / 53.4 / 67.0 43.9 25.5 / 47.3 / 62.0

Model ablations We perform several ablations and validate the importance of positional inter-
actions, long-range interactions and flexible normalization schemes in the Appendix E. Table 11
presents the impact of the query depth |k|, number of heads |h| and intra depth |u| on performance.
Our experiments indicate that the lambda layer outperforms convolutional and attentional baselines
for a wide range of hyperparameters, demonstrating the robustness of the method. The lambda layer
outperforms local self-attention when controlling for the scope size (78.1% vs 77.4% for |m|=7x7),
suggesting that the benefits of the lambda layer go beyond improved speed and scalability.

LambdaResNets significantly improve the speed-accuracy tradeoff of ImageNet classification.
In the Appendix E.5, we study and motivate hybrid LambdaNetwork architectures as a mean to
maximize the speed-accuracy tradeoff of LambdaNetworks. The resulting hybrid LambdaResNets
architectures have increased representational power at a negligible decrease in throughput compared
to their vanilla ResNet counterparts. We construct hybrid LambdaResNets across various model
scales by jointly scaling the depth from 50 to 420 layers and the image size from 224 to 320. Figure 2
presents the speed-accuracy curve of LambdaResNets compared to ResNets with or without channel
attention and the popular EfficientNets (Tan & Le, 2019). LambdaResNets outperform the baselines
across all depth and image scales with the largest LambdaResNet reaching a state-of-the-art accuracy
of 84.8.- Most remarkably, LambdaResNets are ⇠4.5x faster than EfficientNets when controlling
for the accuracy and significantly improve the speed-accuracy Pareto curve of image classification.

Computational efficiency. In Table 5 and Table 6, we find that it is also possible to con-
struct LambdaResNets to improve upon the parameter and flops efficiency of large EfficientNets.
These results are significant because EfficientNets were specifically designed by neural architecture
search (Zoph & Le, 2017) to minimize computational costs using highly computationally efficient
depthwise convolutions. These results suggest that lambda layers may be well suited for use in
resource constrained scenarios such as embedded vision applications (Howard et al., 2017).

Object Detection and Instance Segmentation Lastly, we evaluate LambdaResNets on the COCO
object detection and instance segmentation tasks using a Mask-RCNN architecture (He et al., 2017).
Using lambda layers yields consistent gains at all IoU thresholds and all object scales (especially
the harder to locate small objects), indicating that lambda layers are readily competitive for more
complex visual tasks that require localization information.

6 DISCUSSION

We propose a new class of layers, termed lambda layers, which provide a general and scalable frame-
work for capturing structured long-range interactions between inputs and their contexts. Lambda
layers summarize available contexts into fixed-size linear functions, lambdas, that are directly ap-
plied to their associated queries. The resulting neural networks, LambdaNetworks, are simple to
implement, computationally efficient and capture long-range dependencies at a small memory cost,
enabling their application to large structured inputs such as high-resolution images. Extensive ex-
periments on computer vision tasks showcase their versatility and superiority over convolutional
and attentional networks. Most notably, we introduce LambdaResNets which reach state-of-the-art
ImageNet accuracies and significantly improve the speed-accuracy tradeoff of image classification
models.
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A SOFTMAX ATTENTION

Softmax-attention produces a distribution over the context for each query qn as an = softmax((K+
En)qn) 2 R|m| where the keys K are obtained from the context C and En is a matrix of |m|
positional embeddings. The attention distribution an is then used to form a linear combination of
values obtained from the context as yn =

P
m anmvm 2 R|v|. As we take a weighted sum of the

values, we transform the query qn into the output yn and discard its attention distribution. Via this
operation, each query interacts with the entire context, enabling dense content-based and position-
based interactions. A significant challenge in applying attention to large inputs comes from the
⇥(|bnm|) memory footprint required to store these attention maps.

B GENERATING LAMBDAS FROM MASKED CONTEXTS

In some applications such as denoising tasks or auto-regressive training, it may be useful to restrict
interactions to a sub-context Cn ⇢ C when generating �n for query position n. For example, for
parallel auto-regressive training, it is necessary to mask the future by ensuring that the output yn

only depends on past context positions m < n. Self-attention achieves this by zeroing out the
irrelevant attention weights anm0 = 0 8m0 /2 Cn, thus guaranteeing that yn =

P
m anmvm only

depends on Cn.

Similarly, we can block interactions between queries and masked context positions when generating
lambdas by applying a mask before summing the contributions of context positions. Using the
einsum notation, general masking can be implemented as

µc
bmkv = einsum(Kbmku,Vbmvu)

�c
bnkv = einsum(Pnm,µbmkv)

�p
bnkv = einsum(Eknmu ⇤ Pnm,Vbmvu)

(5)

where pnm = 1[m 2 Cn] and ⇤ is a broadcasted element-wise multiplication.

One can also normalize the keys by only considering the elements in their contexts. Computing
masked lambdas still does not require to materialize per-example attention maps and the complexi-
ties are the same as for global lambdas case.

C ADDITIONAL RELATED WORK

Attention with sparse patterns Many recent works propose to reduce the context size |m| as
a means to reduce the memory footprint of the attention operation. These approaches include the
use of recurrent connections (Dai et al., 2019), imposing static/dynamic/local sparse attention pat-
terns (Parmar et al., 2018; Child et al.; Ramachandran et al., 2019; Kitaev et al., 2020; Beltagy
et al., 2020) or making specific assumptions on the shape of the inputs (Ho et al., 2019; Wang et al.,
2020a). Their implementations can be rather complex and sometimes require specific kernel imple-
mentations to get computational benefits. In contrast, lambda layers are simple to implement for
both global and local contexts using simple einsum and convolution primitives and capture dense

content and position-based interactions with no assumptions on the input shape.

Channel and spatial attention. Channel attention mechanisms, such as Squeeze-and-Excitation
(SE) and FiLM layers, recalibrate features via cross-channel interactions by aggregating signals
from the entire feature map (Hu et al., 2018b;a; Perez et al., 2017). This can be interpreted as a
diagonal lambda which is shared across query positions. Similarly, spatial attention mechanisms,
which reweigh each position based on signals aggregated from all channels can be viewed as a
position-dependent scalar lambdas (Xu et al., 2015; Park et al., 2018; Woo et al., 2018). These
methods have proven useful to complement convolutions but cannot be used as a stand-alone layer
as they discard spatial or channel information.

Linear attention Linear (or efficient) attention mechanisms date back to de Brébisson & Vin-
cent (2016) and were later introduced in the visual domain by Chen et al. (2018) and Shen et al.
(2018). They are recently enjoying a resurgence of popularity with many works modifying the
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popular Transformer architecture for sequential processing applications (Choromanski et al., 2020;
Wang et al., 2020b; Katharopoulos et al., 2020) (See Tay et al. (2020) for a review). These works
typically aim to approximate content-based attention maps using a low-rank factorization of the
attention similarity kernel. We argue that such approaches may be overly restrictive and unnecessar-
ily complex in trying to closely approximate an attention similarity kernel. The lambda layer also
removes the non-linearity of the attention operation and reverses the order of the Q,K,V matrix
multiplications. However, reinterpreting the KV T matrix as a linear function applied to the queries
simplifies the design, allows for flexible normalization schemes and leads to multiquery lambdas
and the lambda convolution.

Hypernetworks LambdaNetworks can alternatively be viewed as an extension of HyperNet-
works (Ha et al., 2016) that dynamically compute their computations based on the inputs contexts.

D EXPERIMENTAL DETAILS

ResNets. We use the ResNet-v1 implementation and initialize the � parameter in the batch nor-
malization (Ioffe & Szegedy, 2015) layer at the end of the bottleneck blocks to 0. Squeeze-and-
Excitation layers employ a squeeze ratio of 4.

Lambda layer implementation details Unless specified otherwise, all lambda layers use query
depth |k|=16, |h|=4 heads and intra-depth |u|=1. The position lambdas are generated with local con-
texts of size |m|=23x23 and the content lambdas with the global context as described in Equation 4.
When the intra-depth is increased to |u| >1, we reduce the scope of size |m|=7x7 and switch to the
convolution implementation to reduce flops. The projections to compute Q and V are followed by
batch normalization and K is normalized via a softmax operation. Positional embeddings are ini-
tialized at random using the unit normal distribution. Local positional lambdas can be implemented
interchangeably with the lambda convolution or by using the global einsum implementation from
Equation 4 and masking the position embeddings outside of the local contexts. The latter can be
faster but has a higher memory footprint and FLOPS due to the ⇥(knm) term (see Equation 4). In
our experiments, we use the convolution implementation only when the feature length |n| > 852 or
in deep architectures that employ intra-depth |u| > 1.

LambdaResNets. We construct our LambdaResNets by replacing the spatial (3x3) convolutions
in ResNet architectures by our proposed lambda layer, with the exception of the stem which is left
unchanged. We apply 3x3 average-pooling with stride 2 after the lambda layers to downsample in
place of the strided convolution. The number of residual blocks per stage for the deeper ResNets are
[4, 29, 53, 4] for ResNet-270, [4, 36, 72, 4] for ResNet-350, and [4, 44, 87, 4] for ResNet-420. When
working with hybrid LambdaNetworks, we use a single lambda layer in c4 for LambdaResNet50,
3 lambda layers for LambdaResNet101, 6 lambda layers for LambdaResNet-152/200/270/350 and
8 lambda layers for LambdaResNet-420. Lambda layers are uniformly spaced in the c4 stage for
hybrid architectures.

ImageNet training setups. We consider two training setups for the ImageNet classification task.
The 90 epochs training setup trains models for 90 epochs using standard preprocessing and allows
for fair comparisons with classic works. The 350 epochs training setup trains models for 350 epochs
using improved data augmentation and regularization and is closer to training methodologies used
in modern works with state-of-the-art accuracies.

ImageNet 90 epochs training setup. We use the vanilla ResNet for fair comparison with prior
works. We used the default hyperparameters as found in official implementations without doing
additional tuning. All networks are trained end-to-end for 90 epochs via backpropagation using
SGD with momentum 0.9. The batch size B is 4096 distributed across 32 TPUv3 cores (Jouppi
et al., 2017) and the weight decay is set to 1e-4. The learning rate is scaled linearly from 0 to
0.1B/256 for 5 epochs and then decayed using the cosine schedule (Loshchilov & Hutter, 2017).
We use batch normalization with decay 0.9999 and exponential moving average with weight 0.9999
over trainable parameters and a label smoothing of 0.1. The input image size is set to 224x224. We
use standard training data augmentation (random crops and horizontal flip with 50% probability).
Most papers compared against in Table 3 use a similar training setup and also replace the 3x3 spatial
convolutions in ResNet architectures by their proposed methods. This allows for a fair comparison.
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Table 8: Contributions of content and positional interactions. As expected, positional interactions
are crucial to perform well on the image classification task.

Content Position Params (M) FLOPS (B) top-1

X ⇥ 14.9 5.0 68.8
⇥ X 14.9 11.9 78.1
X X 14.9 12.0 78.4

ImageNet 350 epochs training setup. Higher accuracies on ImageNet are commonly obtained by
training longer with increased augmentation and regularization (Lee et al., 2020; Tan & Le, 2019).
In the 350 epochs training setup, we replace the baseline architecture with the ResNet-D (He et al.,
2018) and use squeeze-and-excitation in the residual blocks that do not employ lambda layers for the
hybrid LambdaResNets. We additionally replace the max pooling layer in the stem by a strided 3x3
convolution. Networks are trained for 350 epochs with a batch size B of 4096 or 2048 distributed
across 32 or 64 TPUv3 cores, depending on memory constraints. We employ RandAugment (Cubuk
et al., 2019) with a magnitude of 15 as the data augmentation strategy. We use a smaller weight
decay of 4e-5 and dropout with a drop probability of 0.3. All architectures deeper than ResNet-200
are trained with stochastic depth with a drop probability of 0.2.

Tuning Each training setup uses a constant set of hyperparameters across model scales. The im-
proved 350 epoch training setup was found by tuning the baseline architectures to identify a robust
training setup across different scales. While individual accuracies may be improved with further
tuning, we favor simplicity and use the same training hyperparameters for all experiments. We do
not perform early stopping and simply report the final accuracies.

Throughputs. Figure 2 reports the latency to process a batch of 4096 images on 32 TPUv3 cores
using mixed precision training (ı.e bfloat16 activations). Table 4, Table 12 and Table 13 report
inference throughput on 8 TPUv3 cores using float32 precision.

FLOPS count. We do not count zeroed out flops when computing positional lambdas with the
einsum implementation from Eq 4. Flops count is highly dependent on the scope size which is
rather large by default (|m|=23x23). In Table 9, we show that it is possible to significantly reduce
the scope size and therefore FLOPS at a minimal degradation in performance.

Computational efficiency. In these experiments, we replace the last two stages of the ResNet ar-
chitecture (where the convolutions are the most computationally expensive) with lambda layers. The
parameter-efficient LambdaResNets in Table 5 employ an image size of 320. For flops efficiency,
we additionally reduce the lambda scope size to |m|=7x7 and set the image size to 256.

COCO object detection. We employ the architecture from the improved ImageNet training setup
as the backbone in the Mask-RCNN architecture. All models are trained on 1024x1024 images from
scratch for 130k steps with a batch size of 256 distributed across 128 TPUv3 cores with synchronized
batch normalization. We apply multi-scale jitter of [0.1, 2.0] during training. The learning rate is
warmed up for 1000 steps from 0 to 0.32 and divided by 10 at steps 90, 95 and 97.5% of training.
The weight decay is set to 4e-5.

E ABLATIONS

E.1 CONTENT VS POSITION INTERACTIONS

Table 8 presents the relative importance of content-based and position-based interactions on the
ImageNet classification task. As expected, position-based interactions are necessary to reach high
accuracies, while content-based interactions only bring marginal improvements over position-based
interactions.
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Table 9: Impact of the position lambda scope size on the ImageNet classification task. Flops signifi-
cantly increase with scope size, however larger scopes do not translate to longer running time when
using the einsum implementation (see Eq 4).

Scope size |m| 3x3 7x7 15x15 23x23 31x31 global

FLOPS (B) 5.7 6.1 7.8 10.0 12.4 19.4
Top-1 Accuracy 77.6 78.2 78.5 78.3 78.5 78.4

Table 10: Impact of normalization schemes in the lambda layer.

Normalization top-1

Softmax normalized keys (default) 78.4
L2 normalized keys 78.0
Unnormalized keys 70.0

No batch normalization on queries and values 76.2

E.2 IMPORTANCE OF SCOPE SIZE

The small memory footprint of LambdaNetworks enables considering global contexts, even in the
early high resolution layers of the networks. Table 9 presents flops counts and top-1 ImageNet
accuracies when varying scope sizes for LambdaR50 on 224x224 inputs. We find benefits from
using larger scopes, with a plateau around |m|=15x15, which validates the importance of long-
range interactions. We choose |m|=23x23 as the default to account for experiments that use larger
image sizes.

E.3 NORMALIZATION

Table 10 ablates normalization operations in the design of the lambda layer. We find that normalizing
the keys is crucial for performance and that other normalization functions besides the softmax can
be considered. Additionally, applying batch normalization to the queries and values is also helpful.

E.4 VARYING QUERY DEPTH AND NUMBER OF HEADS.

In Table 11, we study the impact of query depth |k|, number of heads |h| and intra-depth |u| on
the accuracy. Our experiments indicate that LambdaNetworks outperform the convolutional and
attentional baselines for a wide range of |k| and |h| hyperparameters. As expected, increasing the
query depth |k| and intra-depth |u| leads to higher accuracies.

E.5 HYBRID LAMBDANETWORKS.

In Table 12 and Table 13, we study the throughput and accuracy of hybrid LambdaNetwork architec-
tures. We find that lambda layers are most helpful in the last two stages of the ResNet architecture
(commonly referred to as c4 and c5) when considering the speed-accuracy tradeoff (see Table 12).
In particular, lambda layers in the c5 stage incur almost no speed decrease compared to 3x3 convo-
lutions. Lambda layers in the c4 stage are relatively slower than convolutions but are crucial to reach
high accuracies. In Table 13, we test how the speed and final accuracy is impacted by the number of
lambda layers in the c4 stage. Our results reveal that most benefits from lambda layers can be ob-
tained by 1) replacing a few 3x3 convolutions with lambda layers in the second last stage (commonly
referred to as c4) of the ResNet architecture and 2) replacing all 3x3 convolutions in the last stage
(c5). The resulting hybrid LambdaResNets architectures have increased representational power at a
virtually negligible decrease in throughput compared to their vanilla ResNet counterparts.
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Table 11: Ablations on the ImageNet classification task using the LambdaResNet50. All configura-
tions outpeform the convolutional baseline at a lower parameter cost. As expected, we get additional
improvements by increasing the query depth |k| or intra-depth |u|. The number of heads |h| is best
set at intermediate values: small |h| translates to having too few queries and large |h| excessively
decreases the value depth, both of which hurt performance.

|k| |h| |u| Params (M) top-1

ResNet baseline 25.6 76.9

8 2 1 14.8 77.2
8 16 1 15.6 77.9

2 4 1 14.7 77.4
4 4 1 14.7 77.6
8 4 1 14.8 77.9

16 4 1 15.0 78.4
32 4 1 15.4 78.4

2 8 1 14.7 77.8
4 8 1 14.7 77.7
8 8 1 14.7 77.9

16 8 1 15.1 78.1
32 8 1 15.7 78.5

8 8 4 15.3 78.4
8 8 8 16.0 78.6

16 4 4 16.0 78.9

Table 12: Inference throughput and top-1 accuracy as a function of lambda (L) vs convolution (C)
layers’ placement in a ResNet50 architecture on 224x224 inputs.

Architecture Params (M) Throughput top-1

C ! C ! C ! C 25.6 7240ex/s 76.9
L ! C ! C ! C 25.5 1880ex/s 77.3
L ! L ! C ! C 25.0 1280ex/s 77.2
L ! L ! L ! C 21.7 1160ex/s 77.8

L ! L ! L ! L 15.0 1160ex/s 78.4
C ! L ! L ! L 15.1 2200ex/s 78.3
C ! C ! L ! L 15.4 4980ex/s 78.3
C ! C ! C ! L 18.8 7160ex/s 77.3

Table 13: Impact of number of lambda layers in the c4 stage of LambdaResNets. Most benefits
from lambda layers can be obtained by having a few lambda layers in the c4 stage. Such hybrid
approaches maximize the speed-accuracy tradeoff.

Config Params (M) Throughput top-1

ResNet101 - 224x224

Baseline 44.6 4600 ex/s 81.3
+ SE 63.6 4000 ex/s 81.8
+ 3 lambda 36.9 4040 ex/s 82.3
+ all lambdas 26.0 2560 ex/s 82.6

ResNet152 - 256x256

Baseline 60.2 2780 ex/s 82.5
+ SE 86.6 2400 ex/s 83.0
+ 6 lambdas 51.4 2400 ex/s 83.4
+ all lambdas 35.1 1480 ex/s 83.4
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